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MOTIVATION - 1

• CFD of steady flow is now mature

• Many industrial codes available, robust and accurate

• Complex flow physics included: moving geometries, 
turbulence, combustion, mixing, fluid-X coupling

• But only the averages are computed
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MOTIVATION - 2

• Averages are not always enough
(instabilities, growth rate, vortex shedding)

• Averages are even not always meaningful

T1 T2>T1

T

time

Oscillating flame
T2

T1

Prob(T=Tmean)=0 !!
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MOTIVATION - 3

• Some phenomena are unsteady in nature.                   
Ex: turbulence in a channel with ablation

O. Cabrit – CERFACS & UM2
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MOTIVATION - 4

• Some phenomena are unsteady in nature.                   
Ex: ignition of an helicopter engine

Y. Sommerer & M. Boileau
CERFACS
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MOTIVATION - 5

• Some phenomena are unsteady in nature.                   
Ex: thermoacoustic instability - Experiment

D. Durox, T. Schuller, S. Candel – EM2C
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MOTIVATION - 6
• Some phenomena are unsteady in nature.                   

Ex: thermoacoustic instability - CFD

P. Schmitt – CERFACS
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PARALLEL COMPUTING
• www.top500.org – june 2007
# Site Computer

1
DOE/NNSA/LLNL
United States

BlueGene/L - eServer Blue Gene Solution
IBM

2
Oak Ridge National Laboratory
United States

Jaguar - Cray XT4/XT3
Cray Inc.

3
NNSA/Sandia National Laboratories
United States

Red Storm - Sandia/ Cray Red Storm, 
Opteron 2.4 GHz dual core
Cray Inc.

4
IBM Thomas J. Watson Research Center
United States

BGW - eServer Blue Gene Solution
IBM

5
Stony Brook/BNL, New York Center for Computional 
Sciences
United States

New York Blue - eServer Blue Gene Solution
IBM

6
DOE/NNSA/LLNL
United States

ASC Purple - eServer pSeries p5 575 1.9 
GHz
IBM

7
Rensselaer Polytechnic Institute, Computional Center 
for Nanotechnology Innovations
United States

eServer Blue Gene Solution
IBM

8
NCSA
United States

Abe - PowerEdge 1955, 2.33 GHz, Infiniband
Dell

9
Barcelona Supercomputing Center
Spain

MareNostrum - BladeCenter JS21 Cluster, 
PPC 970, 2.3 GHz, Myrinet
IBM

10
Leibniz Rechenzentrum
Germany

HLRB-II - Altix 4700 1.6 GHz
SGI
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PARALLEL COMPUTING

• Large scale unsteady computations require huge 
computing resources, an efficient codes …

processors
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SOME KEY INGREDIENTS

• Flow physics : 
– turbulence, combustion modeling, heat loss, radiative transfer, 

wall treatment, chemistry, two-phase flow, acoustics/flame 
coupling, mode interaction, …

• Numerics : 
– non-dissipative, low dispersion scheme, robustness, linear 

stability, non-linear stability, conservativity, high order, 
unstructured environment, parallel computing, error analysis, …

• Boundary conditions : 
– characteristic decomposition, turbulence injection, non-reflecting, 

pulsating conditions, complex impedance, …
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BASIC EQUATIONS
reacting, multi-species gaseous mixture
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SIMPLER BASIC EQUATIONS
• Navier-Stokes equations for a compressible fluid

• Finite speed of propagation of pressure waves
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SIMPLER BASIC EQUATIONS
• Navier-Stokes equations for an incompressible

fluid

• Infinite speed of propagation of pressure waves
• Contain turbulence
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Turbulence



December, 2007 VKI Lecture 15

Turbulence
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TURBULENCE IS 
EVERYWHERE
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TURBULENCE

Leonardo da Vinci 
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TURBULENCE

The flow regime (laminar vs 
turbulent) depends on the 
Reynolds number :

Re= Ud

ν

Velocity Length scale

viscosity

Re

laminar turbulent
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TURBULENCE

•Turbulence is increasing mixing

–Most often favorable (flames can stay in 
combustors)

–Some drawbacks (drag, relaminarization 
techniques…)
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TURBULENCE AND CHAOS

ONERA
WIND TUNNEL
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CHAOS OF THE POOR
]1,1[,21 0

2
1 −∈−=+ vvv tt

66667.0v6667.0 00 == versusv
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TURBULENCE

• The flow is very sensitive to the initial/boundary 
conditions. This leads to the impression of chaos, 
because the tiny details of the operating conditions are 
never known

• This sensitivity is related to the non-linear (convective) 
terms 

• Need for an academic turbulent case
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HOMOGENEOUS ISOTROPIC 
TURBULENCE

• No boundary

• L-periodic 3D domain

• being any physical quantity

L

L

L ( ) 32
,ˆ, Z

L
et i πφφ ==∑ ⋅ kx

k

xk
k

Ω
( )∫∫∫

Ω

⋅−= 3213
,

1ˆ dxdxdxet
L

i
k

xkxφφ

( )t,xφ



December, 2007 VKI Lecture 24

BUDGETS IN HIT

• Spatial averaging

• Momentum

• Turbulent Kinetic Energy (TKE)

0=
dt

ud i
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FLUX OF TKE

• For any K>0 and any 

• KE of scales larger than 2π/K:

• Non linear terms are responsible for the energy transfer
from the largest to the smallest scales
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TURBULENCE: A SCENARIO
1. The largest scales of the flow are fed in energy (l0)

• Must be done at rate 

2. The energy is transferred to smaller and smaller scales (l)
• Must be done at rate

3. When scales become small enough (η), they become 
sensitive to the molecular viscosity and are eventually 
dissipated

• Must occur when:

0

3
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SCALES IN TURBULENCE

• Kolmogorov scales (the smallest ones)

• Large-to-small scales ratio 

• Remark: in CFD, the number of grid points in each 
direction must follow the same scaling

4/1

4/3

ε
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4/14/1 εν≡Ku

4/3
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TURBULENCE SPECTRUM

( ) ),(),( tutuR jiij rxxr +=

• Two-point correlation tensor:

• Velocity spectrum tensor

• Energy spectrum : E(k)dk is the kinetic energy contained in 
the scales whose wave number are between k and k+dk
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KOLMOGOROV ASSUMPTION

• After Kolmogorov (1941), there is an inertial zone
(l0<<l<<η) where E(k) only depends on ε and l (viz. k). 

It follows that: 3/53/2)( −= kCkE Kε

( ))(ln kE 3/5−k

kln
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TURBULENCE SPECTRUM

CHANNEL

ONERA WIND TUNNEL

JET

3/53/2)( −∝ kkE ε
Well supported by 

the experiments
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TURBULENCE IN CFD

• Turbulence is contained in the Navier-Stokes equations

• So it is deterministic

• BUT: because the flow is so sensitive to the (unknown) 
details of IC and BC, only averages can be predicted, or 
used for comparison purposes                                        
ex: numerical/experimental comparisons

• “simply” resolve the Navier-Stokes equations to obtain 
turbulence: Direct Numerical Simulation
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TURBULENCE IN CFD
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TURBULENCE IN CFD
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TURBULENCE IN CFD
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TURBULENCE IN CFD
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DNS OF ISOTROPIC 
TURBULENCE
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DIRECT NUMERICAL 
SIMULATION OF TURBULENCE

• Solve the Navier-Stokes equations and represent all
scales in space and time

• Compute the average, variance, of the unsteady solution

• The main limitation comes from the computer resources 
required: 

– the number of points required scales like
– The CPU time scales like

• In many practical applications, the Reynolds number is 
large, of order 106 or more

( ) 4/9
0

34/3
0 RR =

3
0R
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THE RANS APPROACH
• Ensemble average the (incompressible) Navier-Stokes 

equations

• Reynolds decomposition

• Reynolds equations:

• A model for the Reynolds stress is required
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DNS vs RANS in a combustor

Modern combustion chamber - TURBOMECA

Multiperforated plateSolid plate Dilution hole
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DNS vs RANS in a combustor
• RANS: used routinely during 

the design process. 
• Approx. 106 nodes for the 

whole geometry

•DNS: used to know more 
about the flow physics in 
the multi-perforated plate 
region
•Approx. 106 nodes for only 
one perforation
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THE RANS APPROACH
• Intense scientific activity in the ’70, ’80 and ’90 to derive 

the ultimate turbulence model.                                          
Ex: k-ε, RSM, k-ε-v2, …

• No general model

• No flow dynamics

• Thanks to increasing                                              
available computer                                               
resources, unsteady                                            
calculations become                                            
affordable

Jet of hot gas 

RANSDNS
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RANS – LES - DNS

• Reynolds-Averaged Navier-Stokes : 
– Relies on a model to account for the turbulence effects
– efficient but not predictive

• Direct Numerical Simulation : 
– The only model is Navier-Stokes
– predictive but not tractable for practical applications

• Large Eddy Simulation : 
– Relies on a model for the smallest scales, more universal
– Resolves the largest scales
– Predictive and tractable
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Large-Eddy Simulation



December, 2007 VKI Lecture 44

RANS – LES - DNS

time
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Large Eddy Simulation

Wave number

E
ne

rg
y 

sp
ec

tr
um « Navier-Stokes »       Model

• Formally: replace the average operator by a 
spatial filtering to obtain the LES equations
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LES equations

• Assumes small commutation errors

• Filter the incompressible equations to form       : 

• Sub-grid scale stress tensor to be modeled
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The Smagorinsky model

• From dimensional consideration, simply assume: 

• The Smagorinsky constant is fixed so that the proper 
dissipation rate is produced, Cs =0.18

( ) ijijssgs SSC 22∆=ν
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The Smagorinsky model
• The sgs dissipation is                                                     always 

positive

• Very simple to implement, no extra CPU time

• Any mean gradient induces sub-grid scale activity and dissipation, 
even in 2D !!

• Strong limitation due to its lack of universality.                               
Eg.: in a channel flow, Cs=0.1 should be used

ijijsgsij
sgs
ijm SSS ρντε 2≈=

Solid wall

0  and  )(  because

  0but    0

12 ≠=
≠==

SyUU

WV sgsν

No laminar-to-turbulent 
transition possible
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The Germano identity
• By performing          , the following sgs contribution appears

• Let’s apply another filter to these equations

• By performing        , one obtains the following equations

• From A and B one obtains
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The dynamic Smagorinsky model
• Assume the Smagorinsky model is applied twice

• Assume the same constant can be used and write the Germano 
identity
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The dynamic Smagorinsky model
• The model constant is obtained in the least mean square sense

• No guaranty that             . Good news for the backscattering of 
energy; Bad news from a numerical point of view.

• In practice on takes 

• Must be stabilized by some ad hoc procedure.                              
E.g.: plan, Lagragian or local averaging

• Proper wall behavior
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• The dynamic procedure is one of the reason for the development of 
LES in the last 15 years

• It allows to overcome the lack of universality of the Smagorinsky 
model

• The dynamic procedure can be (has been) applied to other models 
E.g.: dynamic determination of the sgs Prandtl number when 
computing the heat fluxes 

• BUT: 
– it requires some ad hoc procedure to stabilize the computation
– Defining a              filter is not an easy task in complex geometries

• A static model with better properties than Smagorinsky ?

The dynamic Smagorinsky model

∆≈∆ 2



December, 2007 VKI Lecture 53

• From the eddy-viscosity assumption, modeling             means 
finding a proper expression for  

• The Smagorinsky model reads

• More generally, from dimensional argument

An improved static model
sgs
ijτ

sgsν

( ) ijijssgs SSC 2 2∆=ν

( ) ( )[ ] 12 ,   with  ,, −=∆= TtOPtOPCmsgs xxν

Dynamic procedure

Natural choice

Should depend on the filtered velocity.
No necessarily equal to ijij SS2
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• A good candidate appears to be based on the traceless 
symmetric part of the square of  the velocity gradient tensor

• Considering its second invariant

1. Involves both the strain and rotation rates
2. Exactly zero for any 2D field
3. Near solid walls, goes asymptotically to zero

Choice of the frequency scale OP
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• The WALE model makes use of the previous invariant to define 
the sgs viscosity:

1. Proper asymptotic behavior 

2. No extra filtering required

3. Simple implementation

The Wall Adapting Local Eddy 
viscosity model
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Periodic cylindrical tube at bulk    
Reynolds number 10000

Simple geometry with complex
mesh

An academic case
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• Close to solid walls, the largest scales are small …

About solid walls

Boundary layer along the x-direction:Vorticity ωx

- steep velocity profile, Lt ~ κy

- Resolution requirement:∆y+ = O(1), ∆z+ and ∆x+ = O(10) !!

- Number of grid points: O(Rτ
2) for wall resolved LES

z

y

x

u
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• In the near wall region, the total shear stress is 
constant. Thus the proper velocity and length scales
are based on the wall shear stress τw:

• In the case of attached boundary layers, there is an 
inertial zone where the following universal velocity law 
is followed

About solid walls
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• A specific wall treatment is required to avoid huge mesh 
refinement or large errors, 

• Use a coarse grid and the log law to impose the proper fluxes at 
the wall

Wall modeling

u

v
ττττ12

modelττττ32
model

y
u

Exact velocity gradient at wall

Velocity gradient at wall assessed from a 
coarse grid
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• Coarse grid LES is not LES !!

• Numerical errors are necessary large, even for the 
mean quantities 

• No reliable model available yet

Wall modeling in LES

Log. zone => L = κ.y

L < ∆y !!
for j=1, 2
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Numerical schemes for 
unsteady flows
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Classical numerical methods

• Finite elements                                           

• Finite volumes

• Finite differences
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• Finite differences are only adapted to Cartesian meshes

• The most intuitive approach

• In 1D, the three methods are equivalent

• Thus the FD are well suited to understand basic 
phenomena shared by the three methods

A few words about Finite 
Differences
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• Instead of seeking for f(x), only the values of f at the 
nodes xi are considered. Thus the unknowns are fi=f(xi)

• The basic idea is to replace each partial derivative in the 
PDE by expressions obtained from Taylor expansions
written at node i

i 1+i 2+i1−i2−i3−i
x

ix x
1+ix 2+ix1−ix2−ix3−ix

A few words about Finite 
Differences



December, 2007 VKI Lecture 65

First spatial derivative
• Taylor expansion at node i:

• Only derivatives at node i are involved

i 1+i 2+i1−i2−i3−i
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• Defining                               and 
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• If the mesh is uniform then                                  and one 
recovers the classical FD formula :

• The truncation error is

• Second order centered scheme

x
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Other classical FD formulae
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• Consider the convection-diffusion of a passive scalar 
C(x,t) in a 1D, infinite domain

• Assuming a Gaussian initial condition one can derive the 
following analytical solution

0),(lim),()0,(, 02
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∂
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±∞→
txCxCxC

x

C
D

x

C
U

t

C
x
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1D convection-diffusion equation
• Diffusion effect   

D

aU ×= 0Re

+∞=Re

20Re=

200Re=

2Re=
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• 1D convection equation (D=0)

• Initial and boundary conditions:  

Comparing Schemes

m/s1,m8m2,0 00 =≤≤−=
∂
∂+

∂
∂

Ux
x

f
U

t

f

( ) m2.0,4/exp)0,( 22 =−= aaxxf 0),8(),2( ==− tftf

s0=t s5=t
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• Semi-discrete equation

• No error associated with the time integration

• Compute the unknown fi between t=0 and t=5s, using 
different FD formulae  

Numerical test

ifFDU
dt

df
i

i ∀=+ ,0)(0

i 1+i 2+i1−i2−i3−i
x

if
x

1+if 2+if1−if2−if3−if
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Numerical test

t=5s t=5s t=5st=0 t=0 t=0

Upwind 
1st order

Upwind 
2nd order

Centered 
4th order

Centered 
2nd order

400 nodes 200 nodes 100 nodes
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Preliminary conclusions
• Upwind 1st order has a diffusive behavior …

• The 2nd order centered scheme  is virtually exact with 400 nodes. 
The shape of the signal is strongly modified  when only 100 nodes 
are used

• The 4th order centered scheme  is virtually exact even with 100 
nodes

• 4th better than the 2nd order; 2nd order better than 1st order

• The two 2nd order schemes behave differently regarding the speed 
of propagation, the shape of the signal, …

• A scheme cannot be characterized only by its order
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Spectral analysis of 
spatial schemes
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Spectral analysis
• Consider one single harmonic

• 2nd order centered scheme

• The “error” in the first derivative is 

[ ] [ ])exp(Re)exp(Re)( jkxjk
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df
jkxxf =⇒=
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xjkif ii
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About the k∆x parameter

• Consider one harmonic function of period L described 
with N points

• ∆x = L / N,    k = 2π/L thus   k∆x = 2π / N

(exact)
0→∆xk

4

π=∆xk
2

π=∆xk π=∆xk
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Spectral analysis

• The effective equation that is solved is

• Different wavelengths do not propagate at the same 
velocity

0
)sin(

0 =
∂
∂

∆
∆+

∂
∂

x

f

xk

xk
U

t

f

2nd order centered exact
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• Effective equation 0)(0 =
∂
∂∆+

∂
∂

x

f
xkEU

t

f

SCHEME

2nd order 
centered

1st order 
upwind

2nd order 
upwind

4th order 
centered
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∆ )sin(
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−∆ 1)cos(

( ))cos(2
)sin(
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∆

∆
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xkxk

∆
−∆+∆− 3)cos(4)2cos(

( ))cos(4
3

)sin(
xk

xk

xk ∆−
∆
∆

))(( 0 txkEUxjkef ∆−=⇒

Spectral analysis
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Spectral analysis

Upwind 
1st order

Upwind 
2nd order

Centered 
4th order

Centered 
2nd order

Upwind 
2nd order

When k∆x tends to zero, E(k∆x) = 1+O((k∆x)n),
with n the scheme order
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Dispersion
• The effective speed of propagation is equal to the exact one 

only in the liming case k∆x → 0

• The actual speed of propagation of an harmonic 
perturbation depends on its wavelength

• Notably, the modes and                     are not convected 
at the same speed

• What occurs when a multi-frequency function             
propagates ?

)(xf

jkxe ',' kke xjk ≠
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Shape deformation
• Consider the function as a Fourier series

• The analytical solution at time t is

• Numerically, the mode         becomes      

• Summing all contributions one obtains

∑= jkx
kefxf ˆ)(

∑ −=− )(
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Another consequence of dispersion

• In practical computations, the solution may be polluted
by high frequency numerical perturbations

• In practice, the numerical perturbations are not single 
harmonics

• Consider a simple wave packet :

[ ] KkjKxjkxxf <<+= ,)exp(Re)(

x

2π/K

2π/k
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Group velocity

• Solve the 1D convection equation numerically, viz.

• With k<<K:
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Group velocity
SCHEME

2nd order 
centered

4th order 
centered

)( xKE ∆

xK

xK

∆
∆ )sin(

( ))cos(4
3

)sin(
xK

xK

xK ∆−
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dK

dKE
UVg 0=

)cos(0 xKU ∆

( ))2cos()cos(4
3

0 xKxK
U ∆−∆

0/UVg

Wiggles can propagate upstream !

The more accurate the scheme,
the largest the group velocity

2nd

4th
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Numerical test

t=2

t=4

Smooth wave Wave packet

xx xx

2nd order 2nd order 4th order4th order

0=
∂
∂+

∂
∂

x

f

t

f
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Stabilizing computations
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Non linear stability

• Ensuring the linear stability is sometimes not enough, 
especially when performing LES or DNS of turbulent 
flows

• Recall the budget of TKE in isotropic turbulence

• So in the inviscid limit, in absence of external forcing, the 
TKE should be conserved

• Most of the numerical schemes do not meet this property

444 3444 21
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A 1D model example

• Consider the 1D Burgers equation in a L-periodic domain

• Multiply by u, integrate over space:
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Numerical test
• Solve the Burgers equation in a 1D periodic domain with 

random initialization

• Use a small time step to minimize the error due to time
integration (RK4)

• Plot TKE versus time for different schemes

– Upwind biased

– Centered, divergence form

– Centered, advective form
x
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Upwind biased

Divergence form

Advective form

div

iteration
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Numerical test
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iteration

Numerical test

Centered, hybrid form:
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Explanation
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Generalization to Navier-Stokes
• The same strategy can be applied to Navier-Stokes, 
• The convection term are then discretized under the 

skew-symmetric form 
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Boundary conditions
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BC essential for thermo-acoustics

u’=0p’=0

Acoustic analysis of a Turbomeca combustor including
the swirler, the casing and the combustion chamber

C. Sensiau (CERFACS/UM2) – AVSP code
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BC essential for thermo-acoustics

C. Martin (CERFACS) – AVBP code
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Numerical test
• 1D convection equation (D=0)

• Initial and boundary conditions:  

m/s1,m8m8,0 00 =≤≤−=
∂
∂+

∂
∂

Ux
x

f
U

t

f

0),8( =− tf Zero order 
extrapolation

( ) m2.0,4/exp)0,( 22 =−= aaxxf
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Numerical test 0=
∂
∂+

∂
∂

x

f

t
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t=3

t=6

t=9

t=12

t=15

t=18

t=21

t=24

t=27
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Basic Equations
Primitive form:

Simpler for 
analytical work

Not included in 
wave decomposition 
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Decomposition in waves in 1D
Impossible d’afficher l’image.
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- 1D Eqs:
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- Multiplying the state Eq. by L:
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Remarks

• δWi with positive (resp. negative) speed of propagation may 
enter or leave the domain, depending on the boundary

• in 3D, the matrices A, B and C can be diagonalized BUT
they have different eigenvectors, meaning that the definition 
of the characteristic variables is not unique.

M<1u
U + c
U  - c

u
U + c
U  - c
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Decomposition in waves: 3D

• Define a local orthonormal basis with
the inward vector normal to the boundary 

( )21,, ttn
rr

r ( )zyx nnnn ,,=r

CnBnAnE zyxn ++=• Introduce the normal matrix :

• Define the characteristic variables by: nnnnnn LLEVLW ..,. 1 Λ== −δδ

( ) nuucucuuuudiag nnnnnnn
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nu→

nu→
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cun −→
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Which wave is doing what ?

WAVE SPEED INLET (un >0) OUTLET (un <0)

δWn
1 entropy un in out

δWn
2 shear un in out

δWn
3 shear un in out

δWn
4 acoustic un + c in in

δWn
5 acoustic un - c out out



December, 2007 VKI Lecture 105

General implementation
• Compute the predicted variation of V as given by the scheme of 

integration with all physical terms without boundary conditions. 

Note this predicted variation.PVδ

CininPinoutC WLWLVVVV ,11 .. δδδδδδ −− +−=+=

• Compute the corrected variation of the solution during the iteration as:  

• Assess the corrected ingoing wave(s) depending on the physical 

condition at the boundary. Note its (their) contribution.Cinin WLV ,1.δδ −=

CinW ,δ

inPout WLVV δδδ 1−−=

• Estimate the ingoing wave(s) and remove its (their) contribution(s).

Note the remaining variation.
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Pressure imposed outlet
• Compute the predicted value of δP, viz. δPP, and decompose 

it into waves:

• δWn
4 is entering the domain; the contribution of the outgoing

wave reads:

• The corrected value of δWn
4 is computed through the relation:

( )54

2 nn
P WW

c
P δδρδ +=

t
n

C
n P

c
WW δ

ρ
δδ 25,4 +−=

( )5

2 n
out W

c
P δρδ =

OK !

Desired pressure variation at the boundary

( ) tC
nn

CinoutC PWW
c

PPP δδδρδδδ =+=+= ,45,

2

• The final (corrected) update of P is then:
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Defining waves: non-reflecting BC

• Very simple in principle: δWn
4 =0

• « Normal derivative » approach: 

• « Full residual » approach:

• No theory to guide our choice … Numerical tests required
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1D entropy wave

Same result with both
the “ normal derivative ” 
and the “ full residual ”
approaches
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2D test case
• A simple case: 2D inviscid 

shear layer with zero velocity 

and constant pressure at t=0

Full residual Normal residual
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Outlet with relaxation on P
P

c
WW nn δ

ρ
δδ 254 +−=• Start from

• Cut the link between ingoing and outgoing waves to make

the condition non-reflecting

• Set to relax the pressure at 

the boundary towards the target value Pt

• To avoid over-relaxation, αP∆t should be less than unity.

αP∆t = 0 means ‘perfectly non-reflecting’ (ill posed)

P
c

Wn δ
ρ

δ 24 +=

( ) tPPP Bt
P ∆−= αδ
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Inlet with relaxation on velocity and 
Temperature

• Cut the link between ingoing and outgoing waves

• Set to drive VB towards Vt

• Use either the normal or the full residual approach

to compute the waves and correct the ingoing ones via:

( ) tVVV Bt ∆−=αδ
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Integral boundary condition

• in some situations, the target value is not known 

pointwise. E.g.: the outlet pressure of a swirled flow

• use the relaxation BC framework

• rely on integral values to generate the relaxation term to 

avoid disturbing the natural solution at the boundary














−∆= ∫Boundary

Boundary
bulk

1
dSV

S
VtV Btαδ



December, 2007 VKI Lecture 113

Integral boundary condition

• periodic pulsated channel flow (laminar)

U
(y

,t
) 

/ U
bu

lk

)sin(10bulk tuuu t ω+=

Integral BCs to impose 
the flow rate

?
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Everything is in the details

Lodato, Domingo and Vervish – CORIA Rouen
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THANK YOU

More details, slides, papers, …
http://www.math.univ-montp2.fr/~nicoud/


